lauantai 23. maaliskuuta 2019

Vanha matematiikan ongelma ratkennut

Lukuteorian tutkija S Ryley osoitti vuonna 1825, että mikä tahansa murtoluku voidaan esittää kolmen murtolukukuution summana. Tästä heräsi kysymys, voisiko tämä olla totta myös kokonaisluvuilla, toisin sanoen onko olemassa kokonaisluvut x, y ja z siten, että

kaikilla kokonaisluvuilla n?
On osoitettu, että luvuilla, joiden jakojäännös 9:llä jaettaessa on 4 tai 5, ratkaisua ei löydy. Muiden lukujen osalta väitettä ei ole pystytty osoittamaan oikeaksi eikä vääräksi. Yksittäisten lukujen parissa on tehty paljon tutkimuksia. Nyt kauan hankaluuksia tuottanut luku 33 on saanut ratkaisun. Andrew Booker Bristolin yliopistosta on vuosien tietokonelaskelmien jälkeen löytänyt sopivan yhdistelmän. Se on


Nyt alle sadan olevista luvuista on selvittämättä vain luku 42. Alle tuhannen olevia puuttuvia osoituksia on vielä 12 kappaletta.

Uudesta löydöstä uutisoi New Scientist 14. maaliskuuta.

keskiviikko 20. maaliskuuta 2019

Arvostettu Abelin palkinto jaettu

Yksi arvostetuimpia matematiikan palkintoja, Abelin palkinto on jälleen jaettu. Palkinnon sai nyt ensikertaa nainen, Karen Keskulla Uhlenbeck, University of Texas at Austin. Hänen tutkimusalaansa on geometrinen analyysi ja arviointiteoria. Asiasta enemmän The Guardianissa. Abelin palkinto on jaettu vuosittain vuodesta 2003 alkaen. Sitä pidetään Fieldsin mitalin ohella matematiikan Nobel-palkintona, matematiikasta kun Nobel-palkintoa ei jaeta.
(Kuva The Guardian)